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Abstract 
A new classification technique for the identification of bats to species from their echolocation calls is 
presented. Three different datasets are compiled and split in half for training and testing classifiers. 
Combined, the data include 9,014 files (bat passes) with 226,432 candidate calls (pulses or extraneous 
noise) representing 22 different species of bats found in North America and the United Kingdom. Some 
files are of high quality consisting of hand-selected search phase calls of tagged free flying bats while 
others are from a variety of field conditions including both active (attended) and passive (unattended) 
recordings made with a variety of zero crossing and full spectrum recording equipment from multiple 
vendors.   Average correct classification rates for the three datasets on test data are 100.0%, 97.9%, and 
88.8% respectively with an average of 92.5%, 72.2%, and 39.9% of all files identified to species. Most 
importantly, classifiers in the third dataset for two species of U.S. endangered bats, Myotis sodalis 
(MYSO) and Myotis grisescens (MYGR) have a correct classification rate of 100% and 98.6% respectively 
and identify 67.4% and 93.8% of all files to species suggesting that the classifiers are well suited to the 
accurate detection of these endangered bats. 

Introduction 
Populations of bats are commonly monitored acoustically because many species echolocate while 
foraging at night. Echolocation calls are typically recorded using zero crossing detectors or full spectrum 
recorders at high sample rates, and the resulting recordings are then analyzed with software to display 
the frequency modulated sweeps common to many bat species. Identifying bat species from their 
echolocation calls is desirable for management of biodiversity and compliance with environmental 
regulations. Human experts have proven that it is possible in many cases to identify bats by analysis of 
their echolocation calls. However, variation at several levels makes some species indistinguishable 
(Barclay, 1999). Many bats produce a wide range of calls to adapt to their physical surroundings, 
including the presence of other bats, and these calls often converge across species to very similar call 
types making identification difficult. Search phase calls are best suited for the acoustical identification of 
bats because they are the most commonly encountered in the field and have been shown to have 
species-specific characteristics (Allen, Burt, and Miller, 2007). However, field recordings collected from 
unattended passive monitoring sites will likely have a wide variety of call types present (e.g. clutter, 
feeding buzz, etc.) and quality (e.g. near and far, insect noise, and echoes).  
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There have been several efforts to develop algorithms for the automatic classification of bat calls 
including (Parsons and Jones, 2000), (Fukui, Agetsuma, and Hill, 2004), (Skowronski and Harris, 2006), 
(Corcoran, 2007), (Redgwell, Szewczak, Jones, and Parsons, 2009), (Britzke, E.R., J. Duchamp, R.S. 
Swhiart, K.M. Murray, and L.W. Robbins, 2011) et. al. Prior published efforts are generally limited in 
scope attempting to classify from among only a dozen or so individual species using a relatively small 
number of hand-labeled search phase calls. Their performance when presented with the likely variety of 
call types and quality typical of unattended field recordings is unknown.  Prior methods generally involve 
the extraction of discrete parameters (e.g. mean frequency, etc.) from each call pulse to form a feature 
vector, and then use any number of well-known techniques to classify to species including Discriminant 
Function Analysis, Artificial Neural Networks, Random Forest, and Support Vector Machines.  While 
these parameters have demonstrated good classification rates on high quality search phase calls, 
consistent determination of parameters in noisy environments can be challenging and these parameters 
may not contain sufficient discriminant information to separate a larger variety of call types into classes. 
Finally each of these methods was developed specifically for analysis of either zero crossing or full 
spectrum recordings, not both, limiting the choices of recording systems that can be utilized by prior 
methods (Allen, C.R., S.E. Romeling, and L.W. Robbins, 2011). 

The objective of this research is to develop new techniques for accurately classifying the echolocation 
calls of bats on a large scale in the presence of a wide variety of call types, field conditions and recording 
technologies. The author’s prior research in animal vocalization classification (Agranat, 2009) provides 
an imperfect starting point and motivation to find improvements with the hope that these new 
techniques may also find applications in other acoustic classification problems including birds, frogs, and 
cetaceans. 

Full Spectrum vs. Zero Crossing 
Full Spectrum ultrasonic recordings are digital recordings made at high sample rates, typically 200-
500kHz, to record bat calls up to 100-150kHz. These recordings are analyzed by Fourier transforms to 
generate spectrograms representing the frequency sweep of echolocation calls including harmonic 
details and the power distribution of the signal. Zero crossing recordings operate in the time domain and 
count the delay between successive zero-crossings of the signal above some noise threshold. The time 
between zero-crossings, or more commonly between a fixed number of zero crossings known as the 
division ratio, is recorded. Zero crossing analysis can derive the frequency sweep of the echolocation call 
through time representing the strongest frequency components of the call. No amplitude or harmonic 
structure is present. 

In theory, the full spectrum recordings should be better suited to the task of classification because more 
data are available. However, this is not necessarily true.  The added dimension of amplitude information 
can be very sensitive to the frequency response of the ultrasonic transducer, the effect of 
weatherproofing, the distance of the bat, interference from echoes, and other noisy factors that may in 
fact interfere with reliable classification. While it may be true that amplitude information could be a 
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critical component to accurately classifying some species, human experts have been able to reliably 
identify many species from zero crossing recordings without the benefit of this extra information. 
Additionally, the prior efforts report similarly high classification rates when either technique was used. 
Since the objective is to work with as much data as possible, it is desirable to develop techniques that 
work with both full spectrum and zero crossing technologies, and zero crossing is the least common 
denominator.  A full spectrum recording can be converted to zero crossing, but not the other way 
around. So, this solution is based on zero crossings of the echolocation call, but can work with full 
spectrum recordings from which the zero crossing information is extracted. 

Full spectrum recordings enjoy advantages over native zero crossing recordings in that zero crossing 
information can be extracted from full spectrum recordings that would not be possible directly from a 
native zero crossing recorder.  Consider the case of a weak bat signal or a bat signal in the presence of 
insect noise. A native zero-crossing detector may not be capable of detecting a weak signal against 
broadband background noise. On the other hand, a full spectrum recording can be manipulated in the 
frequency domain by applying noise reduction, echo cancellation and band-pass filters to detect, extract 
and enhance the narrowband signal representing the echolocation calls of bats. These techniques are 
beyond the scope of this paper but are embodied in KaleidoscopeTM software from Wildlife Acoustics.  

Incomplete Knowledge and Imperfect Data 
The objective of this research is to build a large scale classifier for the accurate identification of many 
species (worldwide in scope) with confidence by running trials against a massive library of both full 
spectrum and zero-crossing recordings identified to species from numerous sources. A subset of these 
recordings would be used for training classifiers and the remaining recordings would be used to verify 
their performance. This leads immediately to some challenges.  First, can the accuracy of recording file 
labels be trusted? And second, how are the individual echolocation calls that are most suitable for 
classification (e.g. search phase calls) in each file determined? 

To answer the first question, it is unlikely that the data labels will be error free.  Certainly some 
contributions to the collection may include files that were misclassified either from confusion about the 
identity of a call or clerical error in organizing the data. It is also possible that some files may contain 
calls from more than one species. Overall, file labels will generally be accurate, but methods should be 
robust against some portion of the labels being inaccurate. 

To answer the second question, remember that prior efforts generally used hand-labeled search-phase 
calls. Not only would hand labeling each individual call be impractical on such a large scale, but this in 
fact may be undesirable if the underlying assumption that search-phase calls are the most important for 
classification turns out not to be true. Rather than make assumptions about the structure of bat calls 
and their importance in classification, they should be automatically discovered through machine 
learning. 
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The algorithms described below build classifiers from a large library consisting of both full spectrum and 
zero crossing recording files with good but imperfect file-level species labels automatically with no 
human intervention. 

Parameterization of the Echolocation calls of Bats 
Prior work has generally relied on a series of discrete parameters to describe the frequency modulated 
sweep of a bat’s echolocation call. This approach is limiting in that call parameters cannot always be 
extracted consistently from noisy environments, and may miss important subtleties present in the call 
needed for discrimination. Some pairs of species such as Myotis lucifugus and Myotis sodalis have 
significant overlap in discrete parameters such as call duration, characteristic frequency, start slope, 
slope at characteristic frequency, and cumulative normalized slope such that these species cannot be 
differentiated (Szewczak, 2011). 

The following figures illustrate this point with scatter plots of characteristic slope (Sc) vs. call duration, 
initial slope (S1) vs. call duration and call characteristic frequency (Fc) vs. call duration from Myotis 
lucifugus (MYLU) and Myotis sodalis (MYSO) noting that the former is relatively common in the United 
States while the latter is endangered. Notice that there is significant overlap between these two species 
and they cannot be separated on the basis of these parameters alone. The MYLU call distribution 
includes longer duration calls than MYSO and thus longer MYLU calls can be identified.  However, 
shorter duration MYLU calls are nearly indistinguishable from MYSO calls. 
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Figure 1: MYSO/MYLU Discrimination Characteristic Slope vs. Duration 
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Figure 2: MYSO/MYLU Discrimination Initial Slope vs. Duration 
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Figure 3: MYLU/MYSO Discrimination Characteristic Frequency vs. Duration 

In many other disciplines including speech recognition, handwriting recognition, face recognition, 
electrocardiogram analysis, DNA sequencing, etc., the Hidden Markov Model (HMM) has proven to be a 
powerful generative model for representing variable length observation sequences. HMMs are the basis 
of the author’s prior work on bird song classification as well. In simple terms, an HMM is a generative 
model φ that has a probability of generating a sequence of observations. The model is represented as a 
collection of states 𝑿𝒊 with each state having a probability 𝒃𝒊𝒋 of emitting an observation 𝒚𝒋, and 
transition probabilities 𝒂𝒊𝒋 of moving from one state 𝑿𝒊to the next state 𝑿𝒋 at each step t. The 
observations can model discrete symbols or continuous functions, the latter commonly represented as a 
d-dimensional Gaussian Mixture Model (GMM) with mixing coefficients 𝒎𝒊𝒌, mean vectors µ𝒊𝒌 and 
covariance matrixes 𝚺𝒊𝒌. 

In the GMM case, the emission probability is given by the Gaussian probability density function:  

𝑏𝑖𝑘(𝑦) = 𝑚𝑖𝑘  𝑎𝑟𝑔𝑚𝑎𝑥𝑘[ (2𝜋)−
𝑑
2|Σ𝑖𝑘|−

1
2𝑒−

1
2(𝑦−𝜇𝑖𝑘)′Σ𝑖𝑘−1(𝑦−𝑢𝑖𝑘) ] 
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Figure 4: Hidden Markov Model (image courtesy of Wikipedia) 

Given an HMM φ and an observation sequence y, the prior probability P(y|φ) can be calculated by 
using the iterative Viterbi algorithm: 

𝑉0,𝑘 = b(y0|k) πk 

𝑉𝑡,𝑘 = b(yt|k) 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋 (𝑎x,kVt-1,x) 

P(y|φ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋(𝑉𝑇,𝑥) 

In zero-crossing recordings, the frequency modulated sweep of the bat’s echolocation call through time 
is represented as a series of points, or “dots”, one dot for every N zero crossings in the signal. The time 
between dots is stored in the recording. For analysis, the frequency and time position of each dot can be 
easily calculated, and this is how a plot of a bat’s frequency sweep through time can be generated. It is 
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natural to think of the sequence of dots from a zero-crossing recording as an observation sequence, with 
each dot corresponding to an observation.  

The approach described herein uses HMMs to model the variable length sequence of dots normalized to 
the same division ratio to represent the echolocation calls of bats. To help with model alignment and 
because the slope of the frequency sweep is known to be one of the important parameters used in prior 
efforts, a 2-dimensional feature vector modeled as a GMM for each state is used. One dimension 
represents the frequency of each dot, and the second dimension represents the change of frequency 
from the previous dot. These values are normalized to unit variance across the training data, and a 
diagonal covariance matrix is used for convenience. 

A Hidden Markov Model can then be used to model bat echolocation calls. A reasonable estimate for an 
initial model would be one state for each dot with states having left-to-right transitions probabilities 
through the duration of the call. In practice, clustering observations into a smaller number of states 
using K-means also works well and is computationally more efficient. 

By using HMMs to model echolocation calls, every detail of the call’s frequency sweep through time is 
captured without relying on discrete parameters to approximate isolated portions of the call. Hidden 
Markov Models have also been proven in other applications to be robust against noise and variation. 

Discovering Call Types with Unsupervised Clustering 
Given a large collection of files, each containing several echolocation calls and labeled with some 
imperfect degree of accuracy as belonging to a particular species, one objective is to automate the 
process of discovering those call types that are common to the species and therefore good candidates 
on which to base the classifiers. Another objective is to be robust against the inclusion of some files that 
are incorrectly labeled and noise incorrectly extracted as calls. 

Various techniques for clustering HMMs are described by (Butler, 2003), (Chen, Man, and Nefian, 2005), 
et. al. used for analysis of speech, whale song, face recognition and other applications and are ideal for 
clustering variable-length time-series data. Training files are selected with the same species label and 
individual echolocation calls are extracted (or possibly other noise fragments erroneously extracted 
from field recordings) on which to perform agglomerative clustering.  In one approach, each of these 
echolocation calls is represented by a single HMM. All of the HMMs are compared pairwise and the two 
most similar HMMs are merged into a single HMM. This process is repeated until the desired number of 
clusters has been realized. Unfortunately, this approach does not scale well for large data sets. Instead, 
a single HMM is trained with all of the calls, and then the inner product of Fisher scores is used to 
measure the similarity of calls. 

The Fisher score is defined as: 

Uy = 𝛻𝜑 𝑙𝑜𝑔 𝑃(𝑦|𝜑) 
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In the context of HMMs, the Fisher score represents how an observation sequence fits the model with 
respect to each of the model’s underlying parameters. The Fisher score is the gradient of the log 
probability of the observation sequence with respect to each of the model parameters. Two variable 
length observation sequences can be compared by taking the inner product of their Fisher scores. The 
angular distance between these two observations in hyperspace is thus: 

cos
-1

(Ux ∙ Uy) 

The algorithms perform agglomerative clustering by grouping the most similar calls together. This 
generally results in a small number of large clusters per species with a number of smaller clusters and 
un-clustered outliers. The larger clusters represent the most common call types present throughout a 
large portion of the training data (e.g. search phase calls).  Smaller clusters may represent uncommon or 
highly variable calls, or even groups of misclassified calls that are similar to each other but don’t actually 
belong in the data set. The largest cluster by membership is included among the call types of interest.  
Additionally, any other similarly large clusters with at least 50% of the membership of the largest cluster 
are also included. In this way, a handful of HMMs are formed that are trained on the most common call 
types of a given species, and outliers are explicitly discarded. 

To illustrate the power of this approach, consider the MYLU/MYSO classification problem described 
previously that could not be easily solved using simple parametric measurements. This new clustering 
technique applied to the second dataset (Midwest search phase calls) discovered one MYLU cluster 
(with 332 member calls) and one MYSO cluster (with 456 member calls). HMMs are trained with left-to-
right topology with a number of states equal to the average sequence length. A plot of the mean 
frequency with error bars of each state is shown for these clusters.  
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Figure 5: HMMs separating MSYO and MYLU. 

Note that the MYLU cluster and the MYSO cluster overlap significantly in several places, but diverge 
slightly in states 5-10.  Traditional parameters like the characteristic frequency (Fc), characteristic slope 
(Sc), initial slop (S1) and others measure portions of the call where discrimination is not possible. On the 
other hand, HMMs allow us to model the entire call holistically and can tease apart subtle differences to 
greatly improve classification performance. The HMMs automatically discover differences in the calls 
encoded in the model parameters. Analysis of these model parameters suggests that these two species 
can be differentiated from a subtle difference in the slope of the frequency trajectory at around 55kHz. 
This discovered feature does not contribute significantly to the traditional discrete parameters used by 
prior methods and solves the classification problem where others have struggled. 

Classification of Calls 
Given an unclassified observation sequence representing an unknown bat call and a set of trained 
HMMs representing different species classes, a simple method of classification is to calculate the prior 
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probability that each HMM generated the sequence and choose the class with the highest probability. 
This is essentially what the author’s prior work on birdsong classification was based on.  However, it 
turns out that this technique does not produce reliable results. Hidden Markov Models are good 
generative models and are optimized to maximize the prior probabilities of the training sequences, but 
this is not the same as maximizing the discrimination between classes. Classification can break down in a 
number of scenarios. In the author’s prior work, some models with loop states and broader GMM 
variances became “greedy” allowing unrelated sequences to produce high scores. Additionally, short 
duration sequences that fit closely to a portion of a model trained on longer sequences scored high as 
well. When two classes are similar, the optimization for maximizing the probabilities of the training data 
without regard to maximizing the margin between classes can result in high rates of misclassification. 

Fisher scores can improve discrimination of generative models. Using Fisher scores, a variable length 
observation sequence applied to a Hidden Markov Model can be transformed into a fixed-length feature 
vector in high dimensional space with one dimension corresponding to each of the underlying model 
parameters (e.g. state transition probabilities, means and variances of GMMs, etc.). This technique has 
been used successfully in many applications including sign language recognition (Aran and Akarun, 
2009). 

The Fisher score of an observation sequence for an HMM corresponding to the related class reveals 
which model parameters are most significant in their contribution to the prior probability. The Fisher 
score of the same sequence for unrelated HMMs can also be revealing in exposing similarities and 
differences between classes. 

The method described uses a Fisher score vector and prior probability for all the included HMM clusters 
for all species as a classification feature vector given an unknown observation sequence. The number of 
parameters in each HMM can be quite large. An N-state model would have N initial state probabilities, 
N2 state transition probabilities, and N GMMs each containing (in our case) one mixture in two 
dimensions with a mean and diagonal covariance matrix for a total of 5N+N2 parameters. A 16 state 
model would therefore contribute 336 parameters to the feature vector. Given dozens of species, our 
feature vector can quickly grow to on the order of 10,000 dimensions. Only a small portion of these 
dimensions are expected to be significant for discrimination, many dimensions will be noisy, and many 
dimensions will have no significance (e.g. representing model parameters for seldom visited states or 
state transitions). 

Binary classifiers based on Support Vector Machines are popular tools for handling highly dimensional 
spaces, but very good results are achieved using the simpler balanced Winnow methods.  The Winnow 
algorithm is capable of rapid convergence on linearly separable data even when few variables are 
relevant (Kivinen and Warmuth, 1995).  

The balanced Winnow algorithm finds a hyper-plane separating two classes in multidimensional space 
defined by a positive and negative weight vector as follows: 
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  ∑  (𝑤𝑖+𝑥𝑖 −  𝑤𝑖−𝑥𝑖𝑛
𝑖=0 ) > 0, class c = 1. Otherwise c = -1. 

The classifier is trained with an online learning algorithm. When a mistake is made, the weights are 
updated exponentially as follows: 

 𝑤𝑖,𝑡+1+ =
𝑤𝑖,𝑡
+ 𝑒𝑐𝛽𝑥𝑖

∑ 𝑤𝑖,𝑡+1
+𝑛

𝑖=0
 

 𝑤𝑖,𝑡+1− = 𝑤𝑖,𝑡
− 𝑒−𝑐𝛽𝑥𝑖

∑ 𝑤𝑖,𝑡+1
−𝑛

𝑖=0
 

After training, the weights of the Winnow hyper-planes can be analyzed to reduce the dimensionality of 
the problem significantly in the final classifier by eliminating the dimensions that do not contribute 
significantly to the classification. 

Identification of bats to species is a multi-class classification problem solved with binary classifiers 
capable of separating data sets with linear hyper-planes in highly dimensional space. One approach is a 
one-against-all strategy in which a binary classifier is trained for each class in an attempt to find a hyper-
plane that separates members in the class from members in all other classes.  Such an approach if 
possible has the benefit of excluding noise and other non-identifiable calls from analysis.  Unfortunately, 
it is not likely given the number of classes and the similarity among some classes that a one-against-all 
approach is solvable with a linear separating hyper-plane. 

Instead, an exhaustive pair-wise strategy is used with a binary classifier trained to find a separating 
hyper-plane between each pair of classes. In addition, one extra class is defined to represent the 
unidentifiable sequences derived from the discarded HMM clusters. Using this method, Winnow 
converges on a linear separating hyper-plane with average error less than 3% for all pairwise 
combinations. 

The outputs of the pairwise classifiers are combined using a hinge loss function to predict the winning 
class with a confidence factor. If the winning class turns out to be the unidentifiable sequence class, 
then the call is rejected as unknown. 

At the file level, there may be a sequence of echolocation calls recorded during a “bat pass” over several 
seconds.  Each call is classified as above with the confidence factors accumulated by species and 
normalized across the file. The file is considered identified to species if the normalized confidence 
factors exceed some threshold. 
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Discussion and Results 
Recordings of bats were acquired from four different sources, one in the United Kingdom and three in 
North America for this research.  

The first dataset includes 6 different species from the United Kingdom and contains 232 files (bat 
passes) from which 3,293 candidate calls (pulses or extraneous noise) were extracted. These were all 
recorded with full spectrum equipment from Wildlife Acoustics. 

The second dataset includes 10 different species of bats found in the Midwestern United States and 
contains 732 high quality files. These files were recorded in zero crossing with AnaBats from Titley 
Scientific and were hand selected as containing search phase calls of known bats in free flight, often 
employing the use of light tags. From these files, 25,159 candidate calls were extracted. 

A third dataset combines the second dataset described above with all of the files from the other two 
sources. Combined, this dataset includes 17 species of bats found throughout North America including 
10 species of Myotis. The dataset has 8,782 files from which 223,123 candidate calls were extracted. 
These recordings were made in a variety of field conditions including both active (attended) and passive 
(unattended) recordings made with a variety of zero crossing and full spectrum recording equipment 
from multiple vendors.  The dataset is not evenly distributed among species with 38.0% of the files 
representing Eptesicus fuscus (EPFU) and only 0.6% representing Corynorhinus townsendii (COTO). The 
table below lists the species present in these three groups. 

Zero crossing files were normalized to a division ratio of 8 and full spectrum files were converted to zero 
crossing with Kaleidoscope. Individual echolocation calls are extracted from each file by looking for 
chains of between 10-100 dots forming smooth trajectories. After a call is extracted, 50ms of the file is 
skipped to avoid echoes before looking for the next call. Each call is represented as a sequence of two-
dimensional feature vectors, one vector for each dot, with dimensional components representing the 
frequency and change in frequency normalized to unit variance. 

Each dataset is split in half with approximately one half of the files used for training the classifiers and 
the other half used for testing the classifiers against previously unconsidered recordings. 
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Table 1: List of Species 

Common Name Scientific Name Abbreviation 
Western Barbastelle Barbastella barbastellus BABA 
Townsend’s Big-Eared Bat Corynorhinus townsendii COTO 
Big Brown Bat Eptesicus fuscus EPFU 
Eastern Red Bat Lasiurus borealis LABO 
Hoary Bat Lasiurus cinereus LACI 
Silver-haired Bat Lasionycteris noctivagans LANO 
California Myotis Myotis californicus MYCA 
Western Small-footed Bat Myotis ciliolabrum MYCI 
Gray Bat Myotis grisescens MYGR 
Keen’s/Long eared Myotis Myotis keenii/Myotis evotis MYKEMYEV 
Little Brown Bat Myotis lucifugus MYLU 
Northern long-eared Myotis Myotis septentrionalis MYSE 
Indiana Bat Myotis sodalis MYSO 
Fringed Myotis Myotis thysanodes MYTH 
Long-legged Myotis Myotis volans MYVO 
Yuma Myotis Myotis yumanensis MYYU 
Evening Bat Nycticeius humeralis NYHU 
Common Noctule Nyctalus noctula NYNO 
Tricolored Bat Perimyotis subflavus PESU 
Common Pipistrelle Pipistrellus pipistrellus PIPI 
Soprano Pipistrelle Pipistrellus pygmaeus PIPY 
Greater Horseshoe Rhinolophus ferrumequinum RHFE 
Lesser Horseshoe Rhinolophus hipposideros RHHI 
 

The classifier is built from the training data as follows: For each species, a Hidden Markov Model is 
trained on all of the corresponding calls.  For each pair of calls corresponding to each species, the inner 
product of their Fisher scores is used to determine their similarity expressed as an angular separation in 
hyperspace.  Agglomerative clustering is performed by merging calls from the smallest angular 
separation up to some maximum. This generally results in a few large clusters per species which are kept 
while discarding the others. The resulting clusters are shown in the tables below: 
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Table 2: Discovered Clusters (Dataset #1) 

Dataset Cluster Size Total Calls 
 1 BABA.0 39 73 53% 

1 NYNO.0 64 300 21% 
1 NYNO.1 89 " 30% 
1 PIPI.0 160 840 19% 
1 PIPI.1 260 " 31% 
1 PIPI.2 231 " 28% 
1 PIPY.0 280 379 74% 
1 RHFE.0 122 131 93% 
1 RHHI.0 75 77 97% 

  
1,320 1,800 73% 

 

Table 3: Discovered Clusters (Dataset #2) 

Dataset Cluster Size Total Calls 
 2 EPFU.0 1744 2097 83% 

2 LABO.0 840 923 91% 
2 LACI.0 262 422 62% 
2 LANO.0 396 425 93% 
2 MYGR.0 553 1453 38% 
2 MYLU.0 1085 1168 93% 
2 MYSE.0 1026 1195 86% 
2 MYSO.0 501 1577 32% 
2 MYSO.1 727 " 46% 
2 NYHU.0 546 2251 24% 
2 NYHU.1 788 " 35% 
2 NYHU.2 516 " 23% 
2 PESU.0 660 1504 44% 
2 PESU.1 335 " 22% 

  
9,979 13,015 77% 
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Table 4: Discovered Clusters (Dataset #3) 

Dataset Cluster Size Total Calls 
 3 COTO.0 154 451 34% 

3 COTO.1 152 " 34% 
3 EPFU.0 3,861 38,036 10% 
3 EPFU.1 5,913 " 16% 
3 EPFU.2 3,539 " 9% 
3 EPFU.3 3,896 " 10% 
3 EPFU.4 5,583 " 15% 
3 EPFU.5 5,358 " 14% 
3 LABO.0 2,837 9,334 30% 
3 LABO.1 2,361 " 25% 
3 LACI.0 968 3,940 25% 
3 LACI.1 1,891 " 48% 
3 LANO.0 592 1,521 39% 
3 LANO.1 489 " 32% 
3 MYCA.0 1,098 2,119 52% 
3 MYCI.0 1,012 1,906 53% 
3 MYCI.1 666 " 35% 
3 MYGR.0 1,366 1,453 94% 
3 MYKEMYEV.0 1,777 7,335 24% 
3 MYKEMYEV.1 2,192 " 30% 
3 MYKEMYEV.2 1,988 " 27% 
3 MYLU.0 4,194 13,080 32% 
3 MYLU.1 3,399 " 26% 
3 MYSE.0 1,464 2,139 68% 
3 MYSO.0 627 1,577 40% 
3 MYSO.1 502 " 32% 
3 MYTH.0 832 848 98% 
3 MYVO.0 308 1,258 24% 
3 MYVO.1 357 " 28% 
3 MYYU.0 19,947 23,010 87% 
3 NYHU.0 1,196 2,251 53% 
3 NYHU.1 615 " 27% 
3 PESU.0 1,298 1,504 86% 

  
82,432 111,762 74% 



Bat Species Classification from Zero Crossing and Full Spectrum Recordings  Rev 2012-Sep-12 

 

©2012 Wildlife Acoustics, Inc.   18  All Rights Reserved. Patents Pending. 

 

A feature vector is generated for each call by combining the Fisher scores for all of the models and their 
prior probabilities. 

For each pair of clusters across all species, a balanced Winnow classifier is trained to find an optimal 
hyper-plane separating each pair.  Additional Winnow classifiers are trained between each cluster and 
all discarded clusters which are labeled as “no identification”. On average, the Winnow classifiers 
successfully separated 99.95%, 99.06% and 97.17% of call pairs for the first, second and third dataset 
respectively. 

For testing, a feature vector is extracted from each call of each test file as above. The feature vector is 
then classified by each of the binary Winnow classifiers and a hinge loss function is utilized to determine 
the overall winning class with a confidence level indicated by the combined classifier margins. If the “no 
identification” label wins, then the call is discarded.  At the file level, the confidence of each winning call 
is combined to determine an overall winning species classification with an overall confidence score. 

Receiver Operator Characteristic (ROC) curves are calculated and normalized to account for the different 
distributions of species in the datasets. As illustrated in the figures below, a ROC curve is a graph of the 
False Positive Rate (FPR, or Type I error rate) vs. the True Positive Rate (sensitivity, or the rate of actual 
negatives less Type II errors) at different confidence thresholds for a given classifier. Operating a 
classifier at a higher threshold means that classifications with lower confidence will be discarded which 
generally improves the accuracy of the classifications by reducing the False Positive Rate.  However, this 
comes at the expense of increasing the False Negative Rate (Type II errors). The classifier thresholds can 
therefore be adjusted to meet the performance requirements of the application. 

ROC curves are usually plotted in the unit square, but are shown here with the False Positive Rate axis 
only out to 0.10 to show more detail in the results. The perfect classifier runs along the vertical axis and 
perfect classification occurs in the upper left corner of the square. The “line of no discrimination” is the 
diagonal from the origin to the upper right corner of the unit square. Classifiers falling below this line are 
no better than a random coin toss. 

The thresholds are optimized to strike a balance between system-wide misclassification rates and false 
negative rates by assigning a cost to each of these two types of errors and choosing thresholds to 
minimize this cost. For identifying bats from field recordings, it may be more important to optimize 
classifier performance for accuracy rather than sensitivity. Inaccurate classifications can have a high 
cost, for example incorrectly detecting the presence of endangered bats when no such bats are present. 
On the other hand, reduced sensitivity can be easily overcome by monitoring for bats over longer 
periods of time to increase the chances of detection and thus accurate classification. 
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Figure 6: Receiver Operator Characteristic for Dataset #1 
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Figure 7: Receiver Operator Characteristic for Dataset #2 
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Figure 8: Receiver Operator Characteristic for Dataset #3 

The thresholds are optimized to favor accuracy over sensitivity. More specifically, the cost of a 
misclassification was set to ten times the cost of a false negative. It is important to note that this cost 
preference can be customized to the application and that higher sensitivity levels can be achieved at the 
expense of lower accuracy. 

The confusion matrixes are shown in the tables below for both training and testing data for all datasets 
using these optimized thresholds. Each row represents actual recordings with species labels and each 
column represents a classification result.  The Correct Classification Rate (CCR) is the number of correct 
classifications divided by the total number of classifications for a given input.  The Positive Predictive 
Value (PPV) is a measure of classifier performance and is the number of correct classifications divided by 
the total number of classifications for a given classifier. The True Positive Rate (TPR), or sensitivity, is the 
number of correct classifications divided by the total number of corresponding inputs for a given 
classifier and is inversely related to Type II errors. The False Positive Rate (FPR) is the number of 
incorrect classifications divided by the total number of classifications for a given classifier and is related 
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to Type I errors. Note that PPV, TPR, and FPR are normalized to account for the differences in the 
distribution of species in the datasets. 

Table 5: Confusion Matrix - Training Data (Dataset #1) 

 
RHHI BABA RHFE PIPI NYNO PIPY CCR FILES CALLS 

RHHI 11 
     

100.0% 11 77 
BABA 

 
13 

    
100.0% 14 73 

RHFE 
  

20 
   

100.0% 20 131 
PIPI 

   
35 

  
100.0% 35 840 

NYNO 
    

18 
 

100.0% 19 300 
PIPY 

     
18 100.0% 18 379 

    
Correct Classification Rate 100.0% 117 1,800 

          PPV 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% Positive Predictive 
TPR 100.0% 92.9% 100.0% 100.0% 94.7% 100.0% 97.9% True Positive Rate 
FPR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% False Positive Rate 

 

Table 6: Confusion Matrix - Test Data (Dataset #1) 

 
RHHI BABA RHFE PIPI NYNO PIPY CCR FILES CALLS 

RHHI 11 
     

100.0% 11 68 
BABA 

 
10 

    
100.0% 14 85 

RHFE 
  

20 
   

100.0% 20 141 
PIPI 

   
34 

  
100.0% 34 622 

NYNO 
    

17 
 

100.0% 18 251 
PIPY 

     
16 100.0% 18 342 

    
Correct Classification Rate 100.0% 115 1,509 

          PPV 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% Positive Predictive 
TPR 100.0% 71.4% 100.0% 100.0% 94.4% 88.9% 92.5% True Positive Rate 
FPR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% False Positive Rate 

 

The first dataset consists of a relatively small number of files and species. These species are generally 
considered easy to tell apart, and it is entirely possible that some of the test data came from the same 
individual bats as the training data given the small sample size. It is therefore not surprising that the 
classification performance on this dataset was near perfect. There were no misclassified files and 92.5% 
of all test files were identified to species. 
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Table 7: Confusion Matrix - Training Data (Dataset #2) 

 
LABO PESU EPFU NYHU MYGR MYLU MYSO LACI MYSE LANO CCR FILES CALLS 

LABO 23 
         

100.0% 24 923 
PESU 

 
58 

        
100.0% 60 1,504 

EPFU 
  

55 
       

100.0% 57 2,097 
NYHU 

   
46 

      
100.0% 51 2,251 

MYGR 
    

32 
     

100.0% 33 1,453 
MYLU 

     
34 

    
100.0% 34 1,168 

MYSO 
      

47 
   

100.0% 47 1,577 
LACI 

       
17 

  
100.0% 18 422 

MYSE 
        

27 
 

100.0% 27 1,195 
LANO 

         
18 100.0% 18 425 

        
Correct Classification Rate 100.0% 369 13,015 

              PPV 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% Positive Predictive 
TPR 95.8% 96.7% 96.5% 90.2% 97.0% 100.0% 100.0% 94.4% 100.0% 100.0% 97.1% True Positive Rate 
FPR 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% False Positive Rate 

 
 
Table 8: Confusion Matrix - Test Data (Dataset #2) 

 
LABO PESU EPFU NYHU MYGR MYLU MYSO LACI MYSE LANO CCR FILES CALLS 

LABO 14 
  

1 
      

93.3% 23 815 
PESU 1 55 

        
98.2% 59 1,717 

EPFU 
  

22 
       

100.0% 57 1,889 
NYHU 3 

  
29 

      
90.6% 50 2,120 

MYGR 
    

31 
     

100.0% 32 1,382 
MYLU 

     
31 1 

   
96.9% 34 1,226 

MYSO 
      

29 
   

100.0% 46 1,559 
LACI 

       
11 

  
100.0% 18 380 

MYSE 
        

24 
 

100.0% 26 707 
LANO 

         
12 100.0% 18 349 

        
Correct Classification Rate 97.9% 363 12,144 

              PPV 88.8% 100.0% 100.0% 93.0% 100.0% 100.0% 95.5% 100.0% 100.0% 100.0% 97.7% Positive Predictive 
TPR 60.9% 93.2% 38.6% 58.0% 96.9% 91.2% 63.0% 61.1% 92.3% 66.7% 72.2% True Positive Rate 
FPR 0.9% 0.0% 0.0% 0.5% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.2% False Positive Rate 

 

The second dataset also performed extremely well with only 6 test files misclassified out of 363. This is a 
larger dataset with 10 species of bats, and some are considered easily confused including the 
MYLU/MYSO pairing discussed earlier. Without further analysis, it seems reasonable to assume that the 
high classification rate is due to the fact that the files in this dataset are all of very high quality selected 
for containing only search phase calls. There would not be a large variety of random noise, clutter calls, 
feeding buzzes, and other confusing signals that are more common in the field. The average correct 
classification rate was 97.9% and an average of 72.2% of all files were identified to species. 
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Table 9: Confusion Matrix - Training Data (Dataset #3) 

 

EP
FU

 

M
YL

U
 

LA
BO

 

LA
CI

 

PE
SU

 

N
YH

U
 

M
YY

U
 

M
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O
 

M
YS

E 

LA
N

O
 

M
YG

R 

M
YV

O
 

CO
TO

 

M
YT

H
 

M
YK

E 
M

YE
V 

M
YC

A 

M
YC

I 

CCR FILES CALLS 
EPFU 537 

  
6 

    
3 1 

      
00 98.2% 1,672 38,036 

MYLU 1 206 3 
 

1 
   

3 
 

2 1 
  

1 
 

00 94.5% 366 13,080 
LABO 3 10 533 

 
12 16 1 

 
4 

 
5 

     
0 91.3% 778 9,334 

LACI 2 
  

152 
         

1 
  

0 98.1% 265 3,940 
PESU 

    
58 

           
0 100.0% 60 1,504 

NYHU 
     

44 
          

0 100.0% 51 2,251 
MYYU 

 
1 

    
267 

      
1 

 
1 0 98.9% 370 23,010 

MYSO 
       

46 
        

0 100.0% 47 1,577 
MYSE 

        
51 

       
1 98.1% 71 2,139 

LANO 
         

41 
      

0 100.0% 72 1,521 
MYGR 

          
31 

     
0 100.0% 33 1,453 

MYVO 
           

39 
    

0 100.0% 45 1,258 
COTO 

            
21 

   
0 100.0% 29 451 

MYTH 
             

33 
  

0 100.0% 36 848 
MYKEMYEV 

        
1 

     
132 

 
1 98.5% 363 7,335 

MYCA 
        

4 
      

49 0 92.5% 81 2,119 
MYCI 

 
1 

              
36 97.3% 57 1,906 

               
Correct Classification Rate 98.1% 4396 111,762 

                     PPV 95.8% 94.4% 98.8% 99.4% 98.2% 97.7% 99.8% 100.0% 91.4% 99.9% 98.8% 99.7% 100.0% 99.3% 99.3% 99.6% 97.4% 98.2% Positive Predictive 
TPR 32.1% 56.3% 68.5% 57.4% 96.7% 86.3% 72.2% 97.9% 71.8% 56.9% 93.9% 86.7% 72.4% 91.7% 36.4% 60.5% 63.2% 70.6% True Positive Rate 
FPR 0.1% 0.2% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 0.4% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% False Positive Rate 

 

Table 10: Confusion Matrix - Test Data (Dataset #3) 
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M
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A 

M
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I 

CCR FILES CALLS 
EPFU 372 

  
15 

    
5 1 

       
94.7% 1,671 38,525 

MYLU 0 119 5 
   

2 
    

4 
 

1 1 3 2 86.9% 363 13,482 
LABO 4 11 380 

 
11 43 

  
5 

 
10 1 

     
81.7% 776 9,058 

LACI 2 
  

120 
         

1 
   

97.6% 265 3,727 
PESU 0 

 
1 

 
43 

            
97.7% 59 1,717 

NYHU 0 
 

8 
  

34 
           

81.0% 50 2,120 
MYYU 0 

     
203 

        
3 

 
98.5% 370 22,542 

MYSO 0 
      

31 
         

100.0% 46 1,559 
MYSE 0 1 

      
13 

    
1 

   
86.7% 70 1,856 

LANO 1 
        

11 
       

91.7% 71 1,482 
MYGR 0 

         
30 

      
100.0% 32 1,382 

MYVO 0 
          

8 
     

100.0% 45 1,138 
COTO 0 1 

          
3 

    
75.0% 29 515 

MYTH 0 
       

1 
    

14 1 
  

87.5% 38 907 
MYKEMYEV 0 

     
1 

 
2 

   
1 2 126 

  
95.5% 363 7,725 

MYCA 0 3 
      

1 
  

1 
   

14 6 56.0% 82 1,915 
MYCI 0 2 

      
1 

       
12 80.0% 56 1,711 

               
Correct Classification Rate 88.8% 4386 111,361 

                     

                     PPV 89.3% 70.8% 72.0% 98.1% 98.1% 92.5% 98.5% 100.0% 72.3% 99.6% 98.6% 87.9% 97.4% 93.3% 92.3% 91.2% 73.1% 89.7% Positive Predictive 
TPR 22.3% 32.8% 49.0% 45.3% 72.9% 68.0% 54.9% 67.4% 18.6% 15.5% 93.8% 17.8% 10.3% 36.8% 34.7% 17.1% 21.4% 39.9% True Positive Rate 
FPR 0.2% 0.8% 1.2% 0.1% 0.1% 0.3% 0.1% 0.0% 0.4% 0.0% 0.1% 0.2% 0.0% 0.2% 0.2% 0.1% 0.5% 0.3% False Positive Rate 

 

The third dataset is more of a real world test given 17 species of bats recorded in a large variety of field 
conditions. Average correct classification rate was 88.8% with an average of 39.9% of all files identified 
to species. Most classifiers did very well, but some had higher classification errors, most notably 
Corynorhinus townsendii (COTO). As mentioned earlier, COTO is the most underrepresented in the 
training data with only 29 training files. The performance of classifiers on the training data is significantly 
better compared to the test data. For training data, the average correct classification rate was 98.1% 
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with 70.6% of all files identified to species. This suggests that additional training data may improve 
classification performance. 

The most important result is that two species of U.S. endangered bats including Myotis sodalis (MYSO) 
and Myotis grisescens (MYGR) are accurately detected and identified.  The MYSO classifier has a Correct 
Classification Rate of 100%, a False Positive Rate of 0.0%, and a True Positive Rate of 67.4% meaning 
that approximately two in every three bat passes will be detected, and once detected, will be accurately 
identified.  The MYGR classifier has a Correct Classification Rate of 100%, a False Positive Rate of 0.1%, 
and a True Positive Rate of 93.8% meaning nearly all bat passes will be detected and identified correctly. 
These results suggest that the methods described are well suited to the accurate detection of these 
protected species. 

Future work 
Up to this point, the author has avoided review of the underlying recordings in any detail. In fact, the 
strength of these methods is the ability to build classifiers from raw data without further human 
analysis. One obvious next step is to study in greater detail common misclassifications to better 
understand how the methods can be improved further. Additionally, analysis of clustering and HMM 
parameters may offer insights into the structure of the echolocation calls of bats. We are also interested 
in applying these classification methods to other animal vocalizations such as birds, frogs and cetaceans. 
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