Testing the function of female song in the Bachman's sparrow.

Rindy Anderson Florida Atlantic University

Report 1

Testing the function of female song in the Bachman's sparrow. Testing the function of female song in the Bachman's sparrow.

Song Meter SM4 recorder near the nest of a Bachman's sparrow mated pair.

Testing the function of female song in the Bachman's sparrow.

Rindy Anderson releasing a female Bachman's sparrow after marking her with colored leg bands.

Our lab studies animal communication, in particular, the acoustic structure and social function of bird song. One of our ongoing projects at Johnathan Dickinson State Park is to study the structure and function of female song in the Bachman's sparrow. In mid-July, we rotated our SM4 recorder near the nests of several of the mated pairs we were monitoring, trying to capture recordings of the elusive females. Female birds do not sing in the majority or North American songbird species, but Bachman's sparrow females do sing. They don't sing with the showiness or bravado that their mates do, but yet they do produce song-like vocalizations. We want to know why.

Over the past two breeding seasons, we made several observations of females singing in the proximity of their mates, and near the nests they were building. We obtained good quality recordings from one female, which will allow us to develop a protocol for making larger scale acoustic comparisons between the songs of males and females next season. In addition, we placed the recorder on the territories of males that had been subjects in the aggression experiment we were completing. We recorded each male for 24-48 hours, two critical pieces of information: singing patterns from pre-dawn to post-dusk, and singing patterns during undisturbed, unprovoked singing. We are now comparing those singing patterns to the patterns we recorded in response to a simulated territorial intrusion by a singing rival male. In April 2018, we will obtain recordings of 8-10 females to use for acoustic analysis and for playback experiments designed to test when and why females sing.

Report 2

Testing the function of female song in the Bachman's sparrow.

Song by a female Bachman's sparrow

Testing the function of female song in the Bachman's sparrow.

Three primary songs by a male Bachman's sparrow

Testing the function of female song in the Bachman's sparrow.

A "warbled song" by a male Bachman's sparrow

Female birds do not sing in the majority or North American songbird species. Bachman's sparrow females do not sing with the showiness or bravado that their mates do, but they do produce song-like vocalizations. Below is a spectrogram (a visual representation of sound plotting song pitch over time, much like music is visualized) showing an example of one female's song that we recorded using our SM4 song meter. Also pictured are examples of male broadcast songs (called primary song) and an example of "warbled song," which is quite distinct from primary song. The female songs we have visualized so far bear some resemblance to male warbled song, being a non-stereotyped, seemingly jumbled series of notes. During the next field season, we will use the songs we have recorded to perform playback experiments to measure female behavioral responses to a simulated female intruder. We bought four additional SM4 units, which will allow us to rotate the meters among the territories of many more females to capture song at different stages of the nesting cycle. In addition to our study of female song, we used the SM4 meter to record many hours of male Bachman's sparrows singing at the dawn chorus, and throughout the day. From these recordings we are gaining understanding about how males use their song type repertoires in different behavioral contexts, and the degree to which males share song types. Our preliminary data suggest that neighbors share a large number of song types on average (> 50%) while non-neighbors share fewer song types (< 30%). This pattern has implications for how males use their songs to communicate with neighbors, and how song type sharing may influence where young males choose to defend a territory.

Report 3

Testing the function of female song in the Bachman's sparrow. Testing the function of female song in the Bachman's sparrow.

We continue our efforts to gather data on the acoustic structure and social function of female song in Bachman's Sparrow. This is a shy, elusive species. Females are tricky to find, and even more challenging to record, because they sing infrequently. In 2017 we captured a few recordings of female song. So far in 2018, we have observed females singing in the field, but are still working to capture audio recordings.

Our observations suggest that females sing when fertile, in temporal proximity to copulation. Perhaps their songs serve as an invitation to mate? Working on this hunch, we are placing our SM4 recorders on trees within 10 meters or so of nests that are being built, and as eggs are being laid. We have not yet analyzed the many hours of recordings obtained so far (over 620 hours!), but we are hopeful that we havecaptured examples of female song from several different birds.

With these recordings, we will compare the acoustic structure of female song to those of males, and quantify variation in female songs both within and between females. Male Bachman's sparrows sing over 40 types of Primary Song – do females also sing many song types? Does an individual's song vary from day to day, or does she sing a consistent song? How will females respond to songs of other females played on their territories? We look forward to digging into our data to answer these and other questions about this interesting species.

Report 4

Testing the function of female song in the Bachman's sparrow. Testing the function of female song in the Bachman's sparrow.

SM4 song meter recording near the nest of a mated pair of Bachman's sparrows

Our lab studies animal communication, in particular, the acoustic structure and social function of bird song. One of our projects is to study the structure and function of female song in the Bachman's sparrow. Female birds do not sing in most North American songbird species, but Bachman's sparrow females produce song-like vocalizations. We want to know why.

Over the past two breeding seasons here in South Florida, we made several observations of females singing in the proximity of their mates, and near the nests they were building. In April 2018 we began placing our SM4 recorders near nests during the building stage, hoping to capture recordings of female song. This has proven to be a challenging task! In for a total of 118 hours of recordings. From April – July 2018, we recorded on a total of 2017, we recorded on three territories 38 territories, placing the recorders near known active nests, for a total of 3,108 hours of recording.

So far we have found three good examples of female song, and these recordings will serve as stimuli for a playback experiment next spring in which we will test the responses of territorial pairs to playbacks of female song at different stages of the nesting cycle. Our primary goal for the next several months is to analyze the many hours of recordings we gathered this past season to find additional examples of female song.

We will tackle this challenge using a custom software program written by one of our undergraduate students. This program can be "trained" to look for vocalizations matching the acoustic qualities of female Bachman's sparrow song. This program will automate and thus greatly speed-up the process of combing through the recordings, and we hope to find at least a dozen examples of female song by March 2019.

In addition to using our SM4 recorders to capture female song, we have been using them to "eavesdrop" on the natural singing interactions of neighboring male sparrows. Bachman's sparrow males have large repertoires of broadcast song types, and neighboring males tend to share quite a few types in common. In the field, we often hear males within ear-shot of each other counter-singing by matching each other's song types. We are using the SM4 recorders to capture the natural dynamics of these social interactions. This season we recorded a total of 10 sets of neighbors by placing an SM4 recorder near the boundary between neighboring territories. This season we recorded approximately 12 hours a day for several days for each pair of neighbors (2 hours before and 4 hours after sunrise, and 4 hours before and 2 hours after sunset). One student in the lab is now pouring over these recordings to document and describe cases of natural song type matching interactions, which has not been done for this species. So far she has found several astonishing examples of song matching, in which males matched song-for-song during bouts of counter-singing. Why do they do this? We will use these SM4 data along with song playback experiments to try and uncover the social significance of song matching behavior.

In addition, a graduate student in the lab will be analyzing the 3,108 hours of territorial recordings from the SM4 recorders to gain two critical pieces of information: singing patterns of individual birds from pre-dawn to post-dusk, and singing patterns during undisturbed, unprovoked singing. We have many hours of recordings of males singing in response to simulated territorial intrusions, in which we use song playback to provoke territorial behavior. However, little is known about how male Bachman's sparrows utilize their large repertoires during bouts of natural advertisement singing, which are most common at dawn and dusk.

Each field season with Bachman's sparrow brings new challenges and exciting new questions to tackle. We are very enthusiastic to be adding to general knowledge about this understudied and enigmatic species, and why it has evolved such a large and varied vocal communication system. In addition, we are beginning new projects with the Northern cardinal in South Florida, in which we will continue our studies of female song, and will ask new questions about how vocal communication differs across urbanization gradients. We are deeply appreciative to Wildlife Acoustics for their Scientific Product Award of an SM4 meter, which has been a game-changer for our research!

Wildlife Acoustics is proud to support wildlife conservation efforts

Merlin Tuttle's Bat Conservation Bat Conservation International Bat Conservation Trust Wildlife Habitat Counsil