Wildlife Acoustics | Bioacoustic monitoring systems for research, science, industry and governments.

Kasey Cope and Slaney Stringer

Kasey Cope and Slaney Stringer
El Dorado High School Natural Resources Program

East Campus Bird Population Study

» Read Progress Reports

The El Dorado High School's East Campus is a 40 acre satellite site featuring greenhouses, a garden, an orchard and a vineyard. A nearly ideal setting for high schoolers to design and conduct year-long scientific studies and service learning projects.

Kasey Cope and Slaney Stringer, seniors involved in the school's Natural Resources Program, have embarked on an ambitious, first-ever project for the Natural Resources Program to examine how the bird population on East Campus changes seasonally and understand which habitats they utilize during the year. Bioacoustics work is a central part of the project and the two will go about testing their hypothesis regarding seasonal bird population changes and migration activity as well as habitat use based on forest structure and plant biodiversity. Kasey and Slaney will use the Song Meter SM4 to collect the acoustic data and Kaleidoscope Pro software with acoustic Cluster Analysis to analyze the results.

While the study is important, the service aspect of the project carries equal weight. Cope and Stringer will submit the data to a public database to be shared with other students and community members. The two will present the results to local gardening groups for the sake of providing advice to improve local bird habitats. Finally ,the team will host over 200 elementary and middle school students at the East Campus to teach them the power of field science and communicate the importance of healthy habitats to support local wildlife.

Rohit Chakravarty Dr. Anand Krishnan

Rohit Chakravarty and Dr. Anand Krishnan
Indian Institute of Science Education and Research-Pune

Bats in the Himalayas: Establishing a paradigm for long-term acoustic monitoring in a montane ecosystem

» Read Progress Reports

India is home to over 120 species of bats but the most common species are poorly studied. Insectivorous bats located along the sub-tropical and temperate zones of the Himalayas may act as sentinels of warming climates. In this case, the Himalayas, are warming three times faster than the global average. However, the lack of comprehensive data on the trends of bat diversity, occurrence and activity compromises the effectiveness of using bats as bioindicators in the region. Mr. Chakravarty and Dr. Krishnan intend to address this information gap by examining how bat communities distribute and change along a Himalayan elevational gradient where field sites are located from 1400 to 3500 meters above sea level.

With the deployment of Song Meter SM4BAT recorders, the team will establish a long-term bat monitoring standard in the region. The team will train local field staff and students in acoustic monitoring techniques to gather as much acoustical data as quickly as possible. The results of the study will be shared for academic purposes, distributed for conservation initiatives targeting Himalayan biodiversity and used for citizen science and outreach activities for the sake of increased public engagement and awareness of bioacoustics in ecological research.

Dr. Diego Llusia

Dr. Diego Llusia
Universidad Autónoma de Madrid

Searching For The Ghost of The Moor and Habitat Corridors for its Conservation

» Read Progress Reports

The Mediterranean basin is a world biodiversity hotspot. However, land use changes and evolving agrarian techniques are resulting in intense species population declines and local extinctions. Mediterranean species are faced with fragmented distribution ranges and substantially diminished conservation status. The Dupont's Lark is an example of the human-induced impact on biodiversity. Endemic to the Mediterranean steppe habitats and one of the most endangered passerines in Europe, this species decline is linked to habitat loss and a resulting highly fragmented distribution range.

Dr. Llusia's project goal will be to reinforce European conservation actions for the Dupont's Lark by providing new insights into the Iberian distribution and population structure of the species. The project will address the following; 1) identify potential habitat corridors across the Lark's range, 2) determine the absence and presence of the species in each corridor, 3) estimate the male population size of each study site and 4) establish conservation actions and priorities for new population and habitat corridors across the species' range, based on the project findings.

Multiple Song Meter SM4 acoustic recorders will be deployed to collect the data and the results will be analyzed using Kaleidoscope Pro software. Dr. Llusia will use Kaleidoscope's acoustic Cluster Analysis to create his own species classifiers to quickly review and identify the species present in the recordings.

The project's results will be presented by the Terrestrial Ecology Group of the Universidad Autónoma de Madrid to a panel of experts composed of members of Spanish national and regional administrators, technical staff, researchers and a variety of conservation groups.

Ruth Testa

Ruth Testa
Devon Wildlife Trust

Devon Bat Survey

» Read Progress Reports

"We can't protect our most vital bat habitats until we know where they are" explains Ruth Testa, manager of the Devon Greater Horseshoe Bat Project.

Ruth's team will work with landowners to plan, fund and deliver enhancements to the bats' hedgerow and river corridor flight paths. They will look for the means to increase the volume of insect prey in the woods and farmlands where the animals feed.

The project will raise communities' interest in the bats living in their neighbourhoods and highlight their international importance. Ruth and her staff plan to engage at least 3000 people in citizen science work, and to protect and enhance greater horseshoe roosts and critical habitats identified by the volunteers.

Twenty Song Meter SM4BAT ultrasonic bioacoustics recorders will be made available for public loan from April to October. Each volunteer will deploy their borrowed detector for three nights and return the unit with memory card for analysis. Participants will receive reports highlighting the number of each bat species detected at their chosen sites, and the records will then be used to identify key greater horseshoe habitats in need of protection and practical conservation work. Ruth's team will work with landowners to plan, fund and deliver enhancements to the bats' hedgerow and river corridor flight paths, and to increase the volume of insect prey in the woods and farmlands where the animals feed.